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ABSTRACT

Deep learning has become a popular trend in recent years in the machine learning community and has

even occasionally become synonymous with machine learning itself thanks to its efficiency, malleability,

and ability to operate free of human intervention. However, a series of hyperparameters passed to a

conventional neural network (CoNN) may be rather arbitrary, especially if there is no surefire way to

decide how to program hyperparameters for a given dataset. The random hivemind (RH) alleviates this

concern by having multiple neural network estimators make decisions based on random permutations

of features. The learning rate and the number of epochs may be boosted or attenuated depending

on how all features of a given estimator determine the class that the numerical feature data belong

to, but all other hyperparameters remain the same across estimators. This allows one to quickly

see whether consistent decisions on a given dataset can be made by multiple neural networks with

the same hyperparameters, with random subsets of data chosen to force variation in how data are

predicted by each, placing the quality of the data and hyperparameters into focus. The effectiveness of

RH is demonstrated through experimentation in the predictions of dangerous solar energetic particle

events (SEPs) by comparing it to that of using both CoNN and the traditional approach used by

ensemble deep learning in this application. Our results demonstrate that RH outperforms the CoNN

and a committee-based approach, and demonstrates promising results with respect to the “all-clear”

prediction of SEPs.

Keywords: Sun: activity — Sun: particle emission — solar–terrestrial relations

1. INTRODUCTION

The Prediction of Solar Energetic Particle events (SEPs) and the understanding of their precursors represent major

challenges in heliophysics and space weather from both the operational and the research perspectives. Increased fluxes

of SEPs are of interest to various users, from governmental and private space weather agencies to airlines and power grid

operators. Routine daily forecasting and a shorter-term warning and alerts system for the major subclass of SEPs, the

Solar Proton Events (SPEs), was implemented, for example, by Space Weather Prediction Center at National Oceanic

and Atmospheric Administration (SWPC NOAA, Balch 1999, 2008). The performance of this operational forecasting
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system was recently analyzed by Bain et al. (2021) and, although it had improved from the solar cycle 23 to the solar

cycle 24 in general, yet far from capturing every single SEP event ahead of time.

The statistical relations between the flare soft X-ray properties (such as the peak ratios of the 1-8Å and 0.5-4Å fluxes,

which is similar to the temperature computed in a single-temperature approximation, Ryan et al. 2012; Sadykov et al.

2019) and the consequent CMEs and SEPs have been known for a long time. In particular, it found that the lower the

considered soft X-ray class of the flare is, more is the difference in the peak temperature between the SEP-associated

and SEP-quiet flares, with lower temperatures corresponding to SEP-associated flares (Garcia 1994). These relations

were quantified and utilized for forecasting SEP on larger statistics of the events (Garcia 2004). The results were also

reproduced later (Kahler & Ling 2018), where the authors attempted to predict the SEP-associated flares using the k-

nearest neighbors machine learning algorithm and neural networks separately for the Western and Eastern hemispheres.

In addition, the durations and temperatures of the flares were found to be related statistically to the properties of

the CMEs (Ling & Kahler 2020; Kahler & Ling 2022) which can, subsequently, be used to constrain SEP parameters

Kahler & Vourlidas (2013) or serve as a basis for establishing empirical models for SEP forecasting (Richardson et al.

2018).

The extension of these works is the employment of machine learning (ML), and deep learning techniques in particular,

for forecasting SEPs based on the properties of the preceding (parental, host) solar flares. For example, Aminalragia-

Giamini et al. (2021) employed neural networks trained on the time series of the GOES soft X-ray fluxes during the

solar flares directly. The authors found that the model is able to predict the large majority of SEP-associated flares

(higher than 85%) during the considered time period of 1988-2013 while maintaining a low false-positive rate. The

Empirical model for Solar Proton Event Real Time Alert (ESPERTA, Laurenza et al. 2009, 2018) forecasting tool

provides short-term predictions of > 10 MeV and > 100 MeV SPEs. Although not based on machine learning directly,

the method relies on the properties of the host flare and follows a well-defined decision tree for forecasting SEPs.

Boubrahimi et al. (2017) decision tree ML model to also analyze GOES soft X-ray and proton flux time series for

prediction of >100 MeV SPEs. Lavasa et al. (2021) analyzed a variety of ML algorithms (such as random forest,

neural networks, extremely randomized trees, and extreme gradient boosting) and concluded that, among the soft

X-ray parameters, the fluence is the most important for the prediction of SEPs.

One of the challenges related to the prediction of SEP events is that these events are rare and will represent minority-

class events for the classification problem. For example, the number of days with the enhanced flux of ≥ 10MeV

protons (determined as being ≥ 10 pfu to the number of days with no enhanced flux is ∼ 1/23 for the solar cycles

22-24 (Ali et al. 2023) and is even more extreme ∼ 1/34 it the solar cycle 24 only is considered (Sadykov et al. 2021).

It was concluded for the aforementioned ESPERTA model (Stumpo et al. 2021) that the performance of the algorithm

(specifically, the False Alarm Rate, FAR) depends on the class-imbalance ratio in the train data set. Various techniques

can be implemented to deal with the class-imbalanced data, such as oversampling, undersampling, and misclassification

weights (Ahmadzadeh et al. 2021) or generation of the synthetic data (Chen et al. 2021). On the other hand, in addition

to the traditional data-centric approaches to dealing with class imbalance, the ensemble classifiers can be employed

in such problems (Galar et al. 2012). With respect to the problem of the prediction of SEPs, promising results were

previously obtained for neural network-based “committee” ensembles (Aminalragia-Giamini et al. 2021) and random

forest ensemble algorithm (Lavasa et al. 2021).

In our previous work, we have presented the application of the random forest ML algorithm for the prediction of

SEPs and tested various class-imbalance treatment techniques (O’Keefe et al. 2022). In this work, we expand our

investigation to new types of ML algorithms, including Conventional Neural Networks (CoNN), an ensemble of CoNNs

following a voting approach (“Committee”, Aminalragia-Giamini et al. 2021), and introduce a weighted consensus that

we call a Random Hivemind (RH). Both ensemble approaches considered are so-called “bagging” ensemble classifiers,

when individual ensemble members do not depend on each other and deterministically contribute to the classification

decision. Investigation of the relative performance of the algorithms on the given data set of flares associated with

SEPs is the primary focus of this paper. The paper is structured as follows. Section 2 describes the data preparation

employed in this paper, namely the processing of the soft X-ray data, an association of flares and SEPs, and the

preparation of data sets ready for ML. Section 3 describes the ML algorithms tested in this work. The results and

discussion are presented in Section 4 and followed by the conclusion in Section 5.

2. DATA PREPARATION
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The soft X-ray emission in 0.5-4 Å and 1-8 Å wavelength channels can be represented under a single-temperature

plasma approximation by two parameters, namely the plasma temperature (T) and its emission measure (EM). We are

utilizing the T and EM values estimated using the Temperature and Emission measure Based Background Subtraction

algorithm (TEBBS, Ryan et al. 2012; Sadykov et al. 2017) and collected in the Interactive Multi-Instrument Database

of Solar Flares (IMIDSF, Sadykov et al. 2017, https://data.nas.nasa.gov/helio/portals/solarflares/) for 2002-2017 time

period. In addition to peak values of the temperature and emission measure, Tmax and EMmax, we are utilizing the

background-subtracted flare classes (SXRmax), flare durations, and time differences between the Tmax, EMmax, and

SXRmax times to the flare start and end times, which sums up to the 10 parameters for every flare. After the exclusion

of the flares with Tmax = 100 MK and the negative time differences between the flare end times and Tmax, EMmax,

and SXRmax times (which appear because of the TEBBS algorithm implementation issues) our data set contained

24574 flares. This includes 3 A-class, 10536 B-class, 12600 C-class, 1312 M-class, and 109 X-class flares according to

GOES classification after TEBBS background subtraction.

To associate the flares with the SEP records, we are utilizing the list of the Solar Proton Events Affecting the

Earth Environment1 provided by the Space Environment Services Center of the National Oceanic and Atmospheric

Administration (NOAA). The SEPs in this data set represent the events when the flux of >10 MeV particles measured

by the Geostationary Operational Environmental Satellite (GOES) is larger than 10 pfu in its peak. If the flare event

caused the SEP event sometime in the future according to this list, the corresponding flare event is marked as a positive

instance; otherwise, it is marked as a negative instance. Such association results in a total of 74 flares associated with

SEPs, and 24,500 negative flare instances, providing an extreme class-imbalance ratio of 1/331. The distribution of

some of the parameters of these flares is presented in Figure 1. In terms of the SXRmax parameter, 11 of the SEPs

corresponded to the C-class flares, 41 — to M-class, and 22 — to X-class (after the TEBBS background subtraction).

The list of the studied flares is publicly available at the Solar Energetic Particle Prediction Portal (SEP3) webpage2.

Figure 1. Distribution of the flare peak emissions at 1-8 Å and flare peak temperatures (left), and flare durations and peak
emission measures (right). Solar flares that did not result in the following SEP event are marked in black, and that resulted are
marked in red.

One can see in Figure 1 that the flares that resulted in SEPs are not distributed randomly even among the flares of

the same SXR peak fluxes. Specifically, the left panel in Figure 1 indicates that SEP-associated flares are colder on

1 https://umbra.nascom.nasa.gov/SEP/
2 https://sun.njit.edu/SEP3/datasets.html

https://data.nas.nasa.gov/helio/portals/solarflares/
https://umbra.nascom.nasa.gov/SEP/
https://sun.njit.edu/SEP3/datasets.html
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average among the flares of the same SXR peak flux (or flare class). The same dependence was observed by Garcia

(1994, 2004). After the data set is constructed, we subdivide the data set into training and testing subsets, the latter

being 0.3 the size of the original dataset. The train-test separation was repeated 10 times for every machine learning

experiment presented in this paper.

3. MACHINE LEARNING METHODOLOGY

Three neural network-based approaches are considered in this paper for the problem of prediction of SEP events.

The first is the conventional neural network (hereafter CoNN) which represents the fully-connected neural network

architecture. For ensemble deep learners, two more neural network-based approaches are constructed. The first

ensemble approach is the traditional “Committee” scheme that involves using a series of multiple neural network

estimators with the same input features and input layer shapes. The second ensemble approach is a Random Hivemind

(RH) which is built using random permutations of features from the training data as input features. For the series of

tests presented in this paper, the square root of the total number of features, rounded up, is chosen as the number of

input features for each neural network within an RH and the layout between estimators remains unchanged within each

“Committee”. Correspondingly, one has 10 features entering the CoNN or each committee member, and 4 features

selected using the procedure described below entering the RH classifier. Each ensemble setup has 10 neural network

estimators. The architectures of the utilized ML methods are schematically illustrated in Figure 2.

The random permutations of features are chosen by first computing the χ-squared statistics between the features

and the SEP class to assign scores to each feature based on how significant each is in determining whether or not a

given flare caused a SEP. The scores from applying the χ-squared test to the features are normalized so that the sum

of these new scores (“feature weights”) equals one. The feature weights are then used as the probabilities that given

features with their respective weights will be chosen to be used in an RH estimator.

Each neural network, including CoNN, Committee estimators, and RH estimators, has an input layer equal to the

number of features being tested by the said estimator, a dense layer with an input and output shape of 10, a dropout

layer with a probability of 0.2, and an output layer with an output shape equal to the number of predicted features.

The numbers of epochs and learning rates for all neural CoNN and committee setups are kept at their default values of

nepochs = 10 and α = 0.01 respectively, whereas RH boosts its epoch counts and learning rates using these formulae:

nepochs = 10 × (2 − x) (1)

α = 0.01 × (η + xex−1) (2)

Here x is the total sum of feature weights for a given estimator, nepochs is the number of epochs during the training

process, α is the learning rate, and e is the base of the natural logarithm. The parameter η = exΣx/nfeatures, where

nfeatures is the number of features selected for the given estimator, and Σx is the total weight of features in all

estimators within the ensemble. Outcomes are predicted by putting prediction data through each of the estimators

constructed during the training phase and seeing what each estimator chooses as a predicted result. Each committee

considers all results by all estimators as equal, using a simple plurality vote to determine which class a given datum

belongs to. Each RH considers each estimator’s value in a classification vote as equal to the sum of the feature weights

said estimator’s input features have.

Let us consider an example of feature weights in more detail. If a given flare’s SXR peak flux had a feature weight

of 0.25, its emission measure peak value had one of 0.1, its temperature peak value had one of 0.05, and its duration

had one of 0.01, the peak SXR flux would have a probability of 0.25 of being chosen to be in an RH estimator, the

emission measure peak flux would have one of 0.1, etc. A CoNN and a “committee”, however, would consider all

available features equally to be chosen as input features. During training, an RH estimator that uses all four of these

parameters would go through 15 epochs with a learning rate of approximately α = 0.0115. A CoNN and a “committee”

estimator in this example, however, would each only go through 10 epochs with a learning rate of α = 0.01, since

they do not have the ability to be able to automatically calculate these parameters based on feature selection. When

deciding, each RH estimator would use the sums of its feature weights as values, so an estimator with these four

parameters would have a value of 0.5 when voting. Each “committee” estimator would have a value of 1, since, again,

no mechanism exists to determine how to calculate these figures based on feature selection.

For all neural networks, including CoNN, “committee” estimators, and RH estimators, the Adam optimizer is used,

and overfit prevention measures including dropout layers with probabilities of 0.2 and data shuffling are used. Only

flares between soft X-ray classes C4.0 and M3.3 are chosen for training since they are the more ambiguous cases that
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Figure 2. The schematic representation of the layouts of the Conventional Neural Network (CoNN), “Committee” Network,
and Random Hivemind Network (RH). The numbers in parentheses for the linear layers indicate the number of neurons in the
layer, and the number in parentheses for the dropout layer indicates the probability of each connection/weight being dropped
from the training procedure.

all learners need to focus on the most (O’Keefe et al. 2022). This is determined by finding the ”liar’s poker threshold”

mentioned in the paper, which represents the peak X-ray flux value above which the proportion of the total number

of SPE-active flares exceeds that of the SPE-quiet flares in relation to the numbers of flares in each class, and then

finding the corresponding thresholds above and below the prior threshold. Flares of any class are available for use as

testing data.

To classify prediction data, an RH classifier chooses the result that the highest number of estimators reach. In this

case, flares are classified into SPE-active and SPE-quiet. All neural networks involved have balanced class weights

in their cross-entropy loss functions when used as classifiers. Metrics used to compare classification methods include

accuracy, balanced accuracy, true skill score (TSS), and Heidke skill score 2 (HSS). For a definition of these metrics see,

for example, (Bobra & Couvidat 2015). We also utilize the area under the Received Operating Characteristic curve

(ROC AUC), precision, and recall. In addition, we demonstrate the individual elements of the confusion matrix (true

positive predictions, TP , true negative predictions, TN , false positive predictions, FP , and false negative predictions,

FN) for each approach averaged over the 10 random train-test splits.
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4. RESULTS AND DISCUSSION

The results of the classification algorithms employed in this study in terms of confusion matrix elements and various

prediction scores are presented in Table 1 (summary results for all classifiers as the average scores and standard

deviations), Table 2 (summary results for all classifiers as the median scores and median absolute deviations) and

Tables 3, 4, and 5 (results for individual tests for each classifier).

Algorithm / Metrics CoNN Committee RH

TN 5975.9±1025.2 6081.0±321.7 6249.2±381.9

FP 1371.8±1024.9 1266.7±323.5 1098.5±381.8

FN 4.9±7.9 1.7±2.5 0.9±1.5

TP 18.4±9.0 21.6±3.5 22.4±9.3

Precision 0.016±0.010 0.018±0.006 0.022±0.007

Recall 0.78±0.35 0.93±0.11 0.96±0.07

Accuracy 0.81±0.14 0.83±0.04 0.85±0.05

Balanced Accuracy 0.78±0.15 0.88±0.06 0.91±0.04

TSS 0.60±0.31 0.76±0.12 0.81±0.08

HSS 0.025±0.019 0.029±0.011 0.036±0.013

ROC AUC 0.79±0.32 0.94±0.04 0.96±0.02

Table 1. Average values and standard deviations of the performances of the classifiers considered in this paper.

Algorithm / Metrics CoNN Committee RH

TN 6220.0±488.5 6182.5±209.0 6405.0±134.0

FP 1128.5±447.0 1167.0±210.5 942.0±133.0

FN 0.0±0.0 0.5±0.5 0.5±0.5

TP 23.0±3.5 23.0±1.5 24.0±2.5

Precision 0.014±0.005 0.019±0.005 0.023±0.005

Recall 1.0±0.0 0.98±0.02 0.98±0.02

Accuracy 0.85±0.06 0.84±0.03 0.87±0.02

Balanced Accuracy 0.87±0.07 0.89±0.03 0.92±0.02

TSS 0.74±0.15 0.79±0.16 0.84±0.03

HSS 0.022±0.009 0.031±0.009 0.039±0.010

ROC AUC 0.98±0.01 0.95±0.02 0.97±0.01

Table 2. Median values and median absolute deviations (computed as median values of the absolute deviations of the individual
scores from the median) of the performances of the classifiers considered in this paper.

There are several patterns in the forecasting scores evident from these tables. First, there is a striking difference

between the scores and values of the confusion matrix elements obtained for the individual tests for the CoNN classifier.

This is evident in Table 3 where the tests #5, #7, and #10 were accompanied by more than a half of SEP-active flares

classified as non-SEP-active flares (correspondingly, following the condition FN > TP ). Such behavior was rarely

observed for the ensemble approaches (both the committee and RH) and resulted in noticeable differences between

the mean and median scores for the CoNN classifier (for example, the mean values for the TSS score for the CoNN

classified was TSS = 0.60 ± 0.31 while the median value was TSS = 0.74 ± 0.15). Table 1 shows as well that the

ensemble results typically have a much smaller standard deviation of the scores across the train-test pairs (which

is especially evident for the confusion matrix elements and measures like TN , FN , Balanced accuracy, TSS, etc).

Overall, such behavior indicates the robustness of the ensemble approaches with respect to the random train-test splits

for the data set, while the training of the individual classifiers may fail. Therefore, the increase in the complexity of

these ensemble algorithms is justified by their robust performance on the imbalanced data sets (Galar et al. 2012).
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# TN FP FN TP Precision Recall Accuracy Balanced Accuracy TSS HSS ROC AUC

1 5866 1478 0 27 0.0179 1.0 0.7995 0.8994 0.7987 0.0283 0.985

2 3430 3919 0 22 0.0055 1.0 0.4683 0.7334 0.4667 0.0052 0.9915

3 6210 1137 0 24 0.0207 1.0 0.8457 0.9226 0.8452 0.0343 0.9825

4 5299 2046 0 26 0.0125 1.0 0.7224 0.8607 0.7214 0.0179 0.9798

5 6974 375 18 4 0.0106 0.1818 0.9467 0.5654 0.1308 0.0144 0.3023

6 5874 1470 1 26 0.0174 0.9630 0.8004 0.8814 0.7628 0.0271 0.9802

7 6230 1120 11 10 0.0088 0.4762 0.8466 0.6619 0.3238 0.0118 0.5077

8 6347 1008 0 16 0.0156 1.0 0.8632 0.9315 0.863 0.0266 0.9868

9 6763 584 0 24 0.0395 1.0 0.9208 0.9603 0.9205 0.0701 0.9891

10 6766 581 19 5 0.0085 0.2083 0.9186 0.5646 0.1293 0.0102 0.2028

Table 3. Performance metrics of the Conventional Neural Network (CoNN) classifier. The rows correspond to different
experiments, the columns correspond to different forecast outcomes or metrics.

# TN FP FN TP Precision Recall Accuracy Balanced Accuracy TSS HSS ROC AUC

1 6407 937 4 23 0.0240 0.8519 0.8723 0.8621 0.7243 0.0398 0.9208

2 5563 1786 7 15 0.0083 0.6818 0.7567 0.7194 0.4388 0.0106 0.851

3 6323 1024 0 24 0.0229 1.0 0.8611 0.9303 0.8606 0.0387 0.988

4 6421 924 1 25 0.0263 0.9615 0.8745 0.9179 0.8357 0.0447 0.9518

5 5842 1507 1 21 0.0137 0.9545 0.7954 0.8747 0.7495 0.0213 0.9532

6 6272 1072 4 23 0.0210 0.8519 0.854 0.8529 0.7059 0.0341 0.8904

7 5599 1751 0 21 0.0119 1.0 0.7624 0.8809 0.7618 0.0179 0.9375

8 6093 1262 0 16 0.0125 1.0 0.8288 0.9142 0.8284 0.0205 0.97

9 5989 1358 0 24 0.0174 1.0 0.8158 0.9076 0.8152 0.0279 0.9777

10 6301 1046 0 24 0.0224 1.0 0.8581 0.9288 0.8576 0.0377 0.951

Table 4. Same as Table 3 but for the “Committee” classification approach.

# TN FP FN TP Precision Recall Accuracy Balanced Accuracy TSS HSS ROC AUC

1 5304 2040 0 27 0.0131 1.0 0.7232 0.8611 0.7222 0.0187 0.9578

2 6050 1299 1 21 0.0159 0.9545 0.8236 0.8889 0.7778 0.0256 0.9161

3 6248 1099 0 24 0.0214 1.0 0.8509 0.9252 0.8504 0.0357 0.9602

4 6477 868 1 25 0.0280 0.9615 0.8821 0.9217 0.8434 0.0479 0.984

5 6525 824 1 21 0.0249 0.9545 0.8881 0.9212 0.8424 0.0429 0.9517

6 6440 904 1 26 0.0280 0.9630 0.8772 0.9199 0.8399 0.0476 0.9754

7 6370 980 5 16 0.0161 0.7619 0.8664 0.8143 0.6286 0.026 0.9354

8 6030 1325 0 16 0.0119 1.0 0.8202 0.9099 0.8199 0.0194 0.9732

9 6553 794 0 24 0.0293 1.0 0.8923 0.946 0.8919 0.051 0.9868

10 6495 852 0 24 0.0274 1.0 0.8844 0.942 0.884 0.0473 0.9795

Table 5. Same as Table 3 but for the Random Hivemind (RH) classification approach.

Tables 1 and 2 also indicate that the ensemble approaches are noticeably better than the CoNN classifiers with

respect to the measures typically used in space weather forecasting, HSS and TSS, both in terms of the mean and

median values. The TSS score had its median value of TSS = 0.74 for CoNN classifier and increased to TSS = 0.79

and TSS = 0.84 for the committee and RH ensemble classifier. Although the HSS scores were low, they still

demonstrated an increase from HSS = 0.022 to HSS = 0.031 and HSS = 0.039 when transitioning from the CoNN

to ensembles. This demonstrates that the ensemble approaches are performing better, on average, with respect to

the CoNN classifier, and are again more robust with respect to the random train-test separation of the data set, for
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the SEP forecasting purposes. The good performance of the ensemble classifiers was previously noticed in the works

of Aminalragia-Giamini et al. (2021, for the committee approach) and Lavasa et al. (2021, for the random forest

classifier). Interestingly, the case performances of the CoNN classifier, as row #9 in Table 3 demonstrates, may even

outperform the individual ensemble classifier tests, which demonstrates the importance of evaluation of the methods

on several train-test splits and demonstration of its robustness with respect to the random splitting.

Table 2 demonstrates that the RH classifier consistently outperforms the “committee” and CoNN approaches (except,

probably, the number of FN predictions whose median value was lower for CoNN, recall, and the area under the ROC

curve). Also, the consistency of the results of individual tests of the RH classifier is better: the median absolute

deviations are typically either smaller or comparable to the other two approaches. The key difference between the

RH and the committee classifier is in the selection of features used for each individual ensemble member. While the

committee members use all features available, RH members use the down-selected number of features (4 out of 10

in our case) and use the deterministic algorithm of the contribution of each committee member to the final result.

We may assume that the down-selection of features for each member increases the forecasting scores because it helps

to filter out the attention of the individual committee member to the noisy or irrelevant features. This confirms the

importance of the feature selection process, which remains to be an active topic in the prediction of solar transient

events (Bobra & Couvidat 2015; Sadykov & Kosovichev 2017; Yeolekar et al. 2021). Also, although the committee

approach (Aminalragia-Giamini et al. 2021) helps to reduce the “reliance on chance” in terms of the convergence of

the network parameters (weights and biases) to the local or global minima, it still contains similarly-structured CoNN

networks as ensemble members. The RH introduces a more diverse population of ensemble members with the variable

down-selected set of features as an input which can be more beneficial than having full-scale but nearly identical

learners.

Here we notice another benefit of considering the RH approach for ML classification or regression tasks. While

CoNNs are very flexible and malleable in how they train on new data, the parameters they are provided for aspects

such as the size and shape of a given model, hyperparameters, and model selection, may need to be adjusted to be

used on other data sets. This comes with the consequence of a requirement to continuously retrain models as data

becomes more and more outdated or if new features are to be added. The RH allows for individual estimators to

be grown individually to accommodate additional features without the need to retrain the entire ensemble. By only

requiring some, but not all, of the estimators to be retrained, this may reduce the amount of time it takes to retrain

deep learning models.

As noted earlier, the results in Tables 1 and 2 indicate very low numbers for the precision and HSS scores for all

classifiers tested, including an RH classifier. To understand why these measures are low, let us indicate some patterns

in our SEP prediction. Looking at the median confusion matrix elements, one can notice for the RH classifier that,

arranged by larger to smaller, TN ≈ 6400 � FP ≈ 940 � TP ≈ 24 � FN ≈ 0.5. Assuming that one can neglect the

term of the next order of smallness, one can rewrite the metrics of interest as:

Precision =
TP

TP + FP
≈ TP

FP
(3)

HSS =
2 · (TP · TN − FP · FN)

(TP + FN)(FN + TN) + (TP + FP )(FP + TN)
≈

≈ 2 · TP · TN
TP · TN + FP · TN

≈ 2 · TP
TP + FP

= 2 · Precision (4)

Both terms, under the conditions for the confusion matrix elements indicated above, are determined by the
TP

FP
ratio. In cases when the data set is highly imbalanced (in our case, the ratio of the positive to negative samples was

∼1/331) one can expect TP � FP even for a very good predictor. Also, we note that, while the Heidke Skill Score

(HSS) is often annotated as a measure of the performance with respect to a random chance forecast, the forecast

presented here is definitely far from being random: the missed event rate FN/(FN + TP ) ≈ 0.02 is very low (almost

every SEP event is hit) and the false alarm rate FP/(FP + TN) ≈ 0.13 is relatively low as well. Nevertheless, the

HSS scores are just slightly deviating from 0 (HSS = 0.039 on average). Therefore, we argue that it is not always

correct to associate very low HSS scores with the forecast being close to a random chance forecast.

Although not tested for the all-clear forecasting explicitly, the classification approaches implemented here demon-

strate usefulness with respect to the all-clear setting. Specifically, the very low rate of missed events (the average
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rate of the missed events is FN/(FN + TP ) ≈ 0.02 for the RH classifier, and all except one of the individual RH

tests presented in Table 5 have either FN = 0 or FN = 1) is what is typically desirable for the “all-clear” forecasts

(Sadykov et al. 2021). Although the median number of the FN was even lower for the CoNN classifier with respect to

the RH classifier (FN = 0.0 versus FN = 0.5, see Table 2), the CoNN classifier was much less robust with respect to

the random train-test splits as noted earlier, also, it had a significantly higher number of false alarms (FP = 1128.5

versus FP = 942.0). Therefore, we can also potentially expect the RH approach to be a robust “all-clear” predictor

delivering low false-alarm rates for the highly-imbalanced problems.

5. CONCLUSION

In this work, we have introduced an ensemble algorithm — a Random Hivemind (RH) — and compared it with respect

to the Conventional Neural Network (CoNN) and a “committee” ensemble approach for CoNNs. The comparison was

done for the problem of the prediction of Solar Energetic Particle (SEP) events based on the properties of the host

soft X-ray flares. The key outcomes of our work are as follows:

• Both ensemble approaches (committee and RH) demonstrate the robustness of their performance with respect

to the random train-test splits for the data set which was reflected in the low standard deviations or median

absolute deviations. Although often performing comparably to the committee approach in terms of the forecasting

metrics, CoNN demonstrated much higher standard deviations (and often higher median absolute deviations)

and a striking difference between its median and mean performance values.

• Both ensemble approaches demonstrated better performance compared to the metrics typically used in space

weather forecasting, HSS and TSS. One can compare the median TSS = 0.74 for CoNN with TSS = 0.79 and

TSS = 0.84 for the committee and RH, correspondingly, and HSS = 0.022 with HSS = 0.031 and HSS = 0.039.

• The RH ensemble classifier consistently outperforms the “committee” and CoNN approaches in terms of almost

every metric and delivers consistent results over the 10 random train-test split experiments.

• The performance of all classifiers, including RH, demonstrated low precision and HSS scores for the SEP

prediction problem. Nevertheless, their performance should not be associated with being close to a random

chance forecast due to the high class-imbalance nature of the problem.

• All classifiers had a very low number of false negative predictions (FN = 0 for half or more individual tests of

each classifier). However, the robustness of the RH classifier noted previously and the lowest number of false

alarms among the three tested approaches make it the preferential candidate for employment in the “all-clear”

forecasting problem.

From the results above, we can conclude that RH is a valid machine learning algorithm that can perform well despite

class imbalance. RH is mostly superior to CoNN’s and unweighted, identical CoNN committee machines. Further

studies of the RH approach (including different implementations for the feature weights and handling, learning rate

and epoch number adjustments, and the flare class boundaries considered for RH training) are required to understand

its potential in general and specifically for space weather prediction purposes, including “all-clear” forecasting of SEPs.
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